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Modes in chiral core planar waveguides: transition from 
linear to circular polarization 

Warren N. Herman 
Department of the Navy, EO Sensors Division Code 456, 

NAWCAD, Patuxent River, MD 20670 

Abstract 

The general solution for modes in an asymmetric planar waveguide with an isotropic chiral core is given in 
terms of a pair of parameters related to the eccentricity of the polarization ellipse for the transverse electric field. 
This formulation provides insight into the transition, with increasing chirality of the core, from TE/TM modes to 
right-handed (RHC) and left-handed (LHC) circular polarization modes. The mode properties as a function of 
waveguide thickness and of frequency are discussed in detail. In addition to the usual cutoff at a minimum 
thickness (and maximum wavelength), left-handed elliptical modes are found to experience a cutoff at a mode- 
dependent maximum thickness (and minimum wavelength). The limiting case of a symmetric waveguide is also 
discussed. 

1. INTRODUCTION 

The effect of chiral media on electromagnetic waves has been the 
subject of investigation for two decades, with a good deal of the 
initial interest centered about radar wavelengths.I'2,3 In keeping 
with the interest in that part of the electromagnetic spectrum, 
early studies of waveguides containing chiral media were on 
dielectric waveguides with conducting boundaries.4,5'6'7 At 
optical wavelengths in bulk material, one of the important 
physical effects of chirality is optical activity.8 Chiral polymers9 

are potentially excellent materials for chiral optical waveguides 
provided sufficient10 chirality can be realized in a polymer with 
low optical loss and good film-forming properties. Not 
surprisingly, chirality, or handedness, of the medium in all- 
dielectric waveguides has been found to introduce considerable 
additional mathematical complexity resulting in mode properties 
that can substantially differ from the achiral dielectric case. 
Much of the work on planar chiral dielectric waveguides in the 
literature deals with symmetric boundaries,"'1213'14'15 in which 
the top and bottom claddings have the same dielectric properties. 
For asymmetric planar waveguides, perturbation techniques have 
been employed '1617 or approximations have been made18 to 
simplify the mathematics. 

Here we develop the general solution to the asymmetric 
planar dielectric waveguide with an isotropic chiral core without 
making simplifying approximations. The allowed modes are 
elliptically polarized and, in our formulation, the modal 
equations contain a pair of parameters that determine the 
eccentricity of the polarization ellipse for the transverse electric 
field. The solution for a symmetric waveguide is presented as the 
limiting case when the top and bottom cladding indices are equal. 
When the values of the parameters are appropriate for transverse 
electric (TE) and transverse magnetic (TM) modes in the limit of 
vanishing chirality, the modal equations are easily seen to reduce 
to the well-known equations for the TE and TM modes of an 
achiral waveguide. 

2. FIELDS FOR CHIRAL MEDIA 

We use exp(iow) time dependence for Maxwell's equations, 
which results in the equations involving time derivatives taking 
the forms 

VxE + «uB = 0 ,   VxH-/<uD = 0  , (1) 

and adopt constitutive equations including chirality in the Drude- 
Born-Federov form," 

D = e(E + yVxE),   B = /z(H + yVxH), (2) 

where e and \i are the usual permittivity and permeability and y is 
the chirality parameter, which has units of length. The wave 
equation for E resulting from Eqs.(l) and (2) contains a VxE 
term. Wave equations in chiral media that reduce12,18 to the 
Helmholtz equation can be obtained by employing Bohren's 
decomposition20 of E and H , which may be taken to have the 
form18 

E = -(F+ + F")   , H = L &F+ F") ,    (3) 

with 

F* = E + iJji/eH . (4) 

From Eqs.(l) and (2) it follows that the vector field functions 

F~ satisfy 

VxF±=:FA0n±Ii'±   . (5) 

where 

n+ = 
l±S 

— , S =k0n„Y , and k0 = —. 

(6) 

All example calculations in the figures in this paper are done for a 
wavelength of 633 nm. Note that, in terms of these quantities, the 
rotatory power in bulk material is p ~kQng8 forS«l. The 

vector fields F+ and F~ separately obey the Helmholtz equation, 

2ü± 
V^F* +(*0«±) F    =0. (7) 
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Figure 1. Coordinate system for an asymmetric 
planar waveguide with an isotropic chiral core. 

In a bulk medium, F+ and F~  are plane waves with right- 
handed circular (RHC) and left-handed circular (LHC) 
polarization, respectively. 

3. THE ASYMMETRIC PLANAR WAVEGUIDE 

The structure of the planar waveguide under consideration is 
shown in Fig. 1. The top and bottom claddings are not chiral and 
have refractive indices no and ns, respectively, while the core is 

isotropic and has permittivity e = e^nt and chirality y. The 

bottom cladding will frequently be referred to as the substrate. 
The waveguide has thickness d and is assumed to be infinite in 
the ±* direction. The notation here mostly follows that of Ref. 18 
with a notable exception that here we use the symbol y for the 
chirality parameter instead of p used there in order to clearly 
distinguish between the chirality parameter in the constitutive 
equations from the usual symbol p for rotatory power. 

Waveguide modes propagating in the +z direction have 
the form 

F±(y,z)=V±(y)exp(-ik0nejfz), (8) 

where neg is the effective index of a mode with propagation 
constant ß = k§neg . It follows21'18 from Eqs.(5) that the v- and 

z-components of *¥ ± can be found from the ^-component, and 

consequently *F * can be written 

+ neff     + 

nq 

(9) 

V,-(y) = ± 
1    dy-{y) 

ktfiq      dy 

where V~(y) satisfy the Helmholtz equation, 

</V(y) 
dy 
j^ + k0

2(nq
2-n2

Jf)iir±(y) = 0. (10) 

Here, q = ± in the core layer, and q = 0,s in the top and bottom 
claddings, respectively. 

The solution to Eqs.(10) can be expressed in the form 

v±(y)= 

A~ exp(-vy), y > 0 

ß±cos(«±y+0±), 0<y<-d 

C±exp(w(y+rf)) , y<-d 

(H) 

where 

u±=k0^nl-n2
ff , v=kQ^n2

eff-nl , w=k0^n2
ff-n 2 

s ■ 

(12) 

A mode in the chiral core waveguide consists6 of RHC- and 
LHC-polarized waves traveling down the guide with the same 
effective index neB, but total internal reflection off the interfaces 
is at different angles of incidence G* due to differing refractive 

indices«*, i.e., sin0~ =neff/n± and cos0" =u~/(kQn±). 

There are four such circularly polarized waves making up a mode 
in the core: one pair of RHC- and LHC-polarized waves 

* f = B * exp(-i01 )(s ± ipf) exp(-/K f • r) 

traveling toward the top interface with propagation vectors 

K!* =k0n±(0, cosff*, sinO1), and another pair 

<P^=ß±exp(i0±)(s±jp2)exp(-JK2-F) 

(14) 

(15) 

traveling toward the bottom interface with propagation 

vectorsK2
± =*on±(°. -cosfl*, sinÖ1). Thecaret in Eqs.(14) 

and (15) denotes a unit vector and s = x,p12
±=K1>2   xx. 

The vector functions F* are related to these circularly polarized 
waves by 

F^i^f+Of). (16) 

The boundary conditions requiring continuity of the 
tangential components of E and H at the top and bottom 
interfaces give rise to 8 equations, which for completeness are 
given in the Appendix. Using trig identities, Eqs.(A9) to 
(A12) can be written as linear equations for B^in ty*, B^os §* in 
the form 

'ß+sin0+> 

Mr (neff) = 

... ,. 0+ COS0 + 

7    n    B   sin0 

B~ cos0~ 

-1 

-1      - 

CT      -S + 

Cr+     -Sr+ 

'bO'o 

= 0 

-rocrö 
C~ 

-Cr~ 

1 

-S' 

sr 

(17) 

where 



C~ =agCos(u~d) + s'm(u~d) , 
+ + + + 

Cr~ =rsOsCos(u~d) + sm(u~d), 

S~ = oy sin(tt_d)-cos(H~d) , 

Sr~ =rs<J7s'm(u~d)-cos(.u~d), 

CT*=(1±<5) — crj=(l±5) — 

(18) 

cot(0±) = 4^ 

and 

cot(u~d-(j>~) = a ±,    _±Ci±>^ 
\±h 

(24) 

(25) 

As a consequence, Eqs.(24) reduce Eqs.(A9) and (A10) to the 
single equation 

t) 
_"0 , and r. 

"    „2 

As usual, the vanishing of the determinant of the coefficient 
matrix in Eq.( 17), viz., 

DY(neJf)=\NlY(neff)\ = 0  , (19) 

determines the effective indices n^for the allowed modes. It is 
instructive to note that in the limit of zero chirality the matrix MY 

can be reduced to block form and the determinant 

DY(neff) 
r=o 

'= DQ(neff) reduces to 

j+(T^sin0+ |fl_q0sin4>      Q 

l+g l-g 
(26) 

and Eqs.(25) reduce Eqs.(Al 1) and (A12) to the single equation 

B+ of sm\fi+d -ft+), g- gj smlfi'd -0") 
l + /i \-h 

= 0 .      (27) 

Requiring the determinant of the coefficients of B* and B~ to 
vanish in Eqs.(26)-(27) gives another condition that can be 
written 

DQ(neff) = 4\MTEplm\ 

where 

Mre = g0 

C 
Mm = 

Wo     -1 
Cr     -Sr 

(20) 

(21) 

l + /i 

l-/j Srö -Sog 

SÖ ~ aÖ sin("_ü') -cos(«-rf), 
+ +        + + Sr^ =/()<TQ sin(tt_rf)-cos(«~(i), 

(28) 

The matrix elements in Eq.(21) are devoid of ± superscripts and 
correspond to the respective quantities defined in Eq.(18) but 
with Y=0. The separate vanishing of the determinants in Eq.(20) 
gives rise to the well-known22 TE and TM mode equations, which 
will be further discussed below. 

Eq.(19) only yields the allowed effective indices n^. To 
determine the remaining parameters, as well as an alternate 
approach to determining n^, we return to Eqs. (A9-A12) and 
require the vanishing of the determinant of the coefficients of B+ 

and B~ in Eq.(A9) taken with (A 10) and of the determinant of the 
coefficients of B* and B in Eq.(ll) taken with (12). After some 
algebraic manipulation, we can write these conditions in the 
respective forms 

111 (22) 

1- 
COt(0+)      ,     COt(0   )      A0 

go 
and 

cot(u+d-<l>+) cot(« d-<p  )     Ai 
(23) 

1- 

= 1, where Ao=y(l-^j) and As=±(l-rs). These equations are 

identically satisfied upon introduction of new parameters g and h 
such that 

where we have used trig identities and Eqs.(24) together 

witho-Q<r7 =cr/o-ö", which follows from their definitions in 

Eqs.(18). Eqs.(24),(25) and (28) represent five equations for the 
5 unknowns 0*, g, h, and n^ and contain all conditions on these 
parameters imposed by the boundary conditions. 

Equations for the subset (g, neff) can be obtained by 
eliminating 0* in Eqs.(24) and (25) and also solving (28) for h as 
a function of g to arrive at 

u~d =col ^MJL |+cot-i 
0 i±g 

+ rs±h\ 
rT—  + m~K 

fi(g,neff)> 
(Sr+-Sn)) + (S^+S0)g 

(29) 

(30). 

where m* are integers that are not necessarily equal. Using 
Eq.(30), the two equations in (29) can be simultaneously solved23 

for g and neS after which the phases (j)* can then be found from 
(24). Eqs.(29) reduce to the equation24 for the TM modes of 
achiral media in the limits (y->0, g-»0) => /i-)0, although it also 
has solutions with TE mode limits as )<-»0 as explained in the 
following text. For each value of m in Eq.(29) there are two 
solutions for neff:   one with \g\ < 1 and one with |g| > 1. The 

former has the above-mentioned TM mode limit for y-^0, while 
the latter has a TE mode limit for y-^0.  Formally, the TE mode 



limit of Eqs.(29) and (30) is (y-»0, g-> ±°°) => ft-> ±°°. Because 
efficient numerical solution of Eq.(29) requires good initial 
guesses for the unknowns n^ and g, it is advantageous for the 
modes with a TE limit (viz., those with |g| > 1) to change to new 

parameters 

g=l/g,      h=l/h, (31) 

in order to limit the parameter space in which to search for a 
solution. With these substitutions, Eqs.(29) and (30) take the 
forms 

u~d =cot <T, 
«±1 0    ö 

+ cot -1 ■±fr_ft±l 
ft±l 

a: + m~7t 

(S/b
++5/D)g+(5+-50) 

h(.g,neff) = —^ — T — • 
(Sr0

+-S/o)g+(5++S0) 

(32) 

(33) 

and the parameter space for solutions with a TE mode limit is 
then restricted to |g| < 1. In both cases, values of neS are limited 

to max(n0, ns)< neff< min(/t+, n.) if both the RHC and LHC 
components of the modes [see Eqs. (14)-(16)] are to be totally 
internally reflected as required for completely guided modes. 
Once neff and g (or g ) are found, the phases <)>* can be obtained 

from Eq.(24) and, selecting B~ as the arbitrary amplitude, the 
remaining constants A*, B*, and C* can be obtained from 
Eqs.(26), (30), (A1-A2), and (A5-A6): 

B+ =B' g + Tj 

S-'D 

COS0 

COS0 + 

A~=B  cosd (*±fi) 

^ 

'  '- ) 

(34) 

(35) 

(36) 

Note that for modes involving solutions g of Eq.(32), the phases 
«ji*, and constants A±, B+, and C* can be found from Eqs.(24) and 
(34-36) simply by first calculating the corresponding value of g 
using g = l/g . 

parameters (as well as their counterparts g and ft) are measures of 

the eccentricity of the polarization ellipse for the transverse 
electric field in the top and bottom claddings. 

From Eqs.(3), (8), and (9), the transverse electric field 
is given by 

Er = ^jfo^OO+lTOO]* +i"eff 
v+(y)   V (y) 

x exp(-j*o"<# z) 
(37) 

which is recognized to be elliptically polarized in general, with 
major axes lying along either the x- or y-axes. Using Eq.(35) in 
(37), the ratio of the y-component to the jc-component everywhere 
in the top cladding (achiral) is given by 

Ey_    . _nejf ifc _.neff 1 (3g) 

Ex y>0       n0     g ng   g' 

Noting that neg jng »1, especially far from cutoff, the 

polarization state of the transverse field in the top cladding can be 
inferred from the value of g as follows: 

TM: £->0 

TE: s->±°° (or g ->  0) 

~RHC: g->+l (or g -> +1) 

-LHC: s-+-i (or g -» -1) 

(39) 

The parameter ft gives the polarization state of the transverse field 
in the bottom cladding in a similar fashion because the use of 
Eq.(36) in (37) gives 

y<-d       ns     h n„   h 
(40) 

In the core, the eccentricity of the polarization ellipse 
varies as a function of y. The polarization state there is seen to 
depend on B* and ß~ as follows: ß" = 0=»RHC, ß+=0=> 
LHC, [B~ -» B* as }*-»0 ]=» TE, [BT -4 - B* as y-»0] =» TM. 
From Eqs.(24) and (26), we can derive the equation 

4. DISCUSSION 

Polarization of the Transverse Electric Field 
An essential step leading to the form of the solution to 

the chiral core asymmetric planar waveguide given in the 
previous section is recognizing that two of the constraints arising 
from the boundary conditions can be written in the particular 
forms given in Eqs.(22) and (23), which can then readily be seen 
to be identically satisfied by introduction of the parameters g and 
ft as in Eqs.(24) and (25).  We will now show that these 

B' 
■ = sign (*+D 

(s-i) 
-a 

(5 + D + (8 + r0y (*-l) 
l2 

tfo 
+ (s-t)r 

(41) 
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Figure 2. Plots of the eccentricity parameter g versus chirality 
for the first six elliptical modes in a planar waveguide with a 3 
Urn thick core and ng = 1.59, n0= 1.00, ns= 1.51. Top plot: 
modes that are RH elliptical for y > 0 (and LH elliptical for y < 
0) evolving from TM modes at y = 0. Bottom plot: modes 
that are LH elliptical for y > 0 (and RH elliptical for y < 0) 
evolving from TE modes at y = 0. 

which relates the polarization state in the core to the parameter g. 

In the limit of zero chirality, in which case CfJ -» <TQ , the TE 

and TM mode limits are obtained for g—> ±°° (g —> 0) and g—> 
0, respectively. For the allowed modes in a chiral core 
waveguide, the transverse electric field is elliptically polarized. 
When the amount of chirality is small (as discussed more fully 
later), the modes are nearly TE (or TM) because the major axis is 
much larger than the minor axis. Modes with a predominant 
RHC polarization or LHC polarization are realized when g—> ±1, 
as can be seen from Eq.(41). There is a maximum on the right- 
hand side of Eq.(41) as g-> 1, so that B*/B~ »1 resulting in 
predominantly RHC polarization, and a minimum as g-> -1, so 
that B*/B~ « 1 resulting in predominantly LHC polarization. 

Polarization Dependence on Chirality 
In an achiral film, as is well known, the modes are 

transverse electric (TE) and transverse magnetic ( TM). An 
example of the transition with increasing chirality from TE/TM 
modes in the achiral case to predominantly right- and left-handed 
circularly polarized modes is demonstrated in Figure 2 for a 
planar waveguide with a 3 \xm thick core and ng = 1.59, «0= 1.00, 
«j = 1.51. These values are illustrative of a chiral polymer on a 
glass substrate at a wavelength of 633nm. The parameter g, 
which is proportional to the eccentricity of the polarization 

1.59 

1.57 

1.55 

1.53 

1.51 

d (\im) 

Figure 3. Effective index neff vs thickness d curves for TE and 
TM modes in an achiral (y = 0) asymmetric planar waveguide 
with ng = 1.59, n0= 1.00, ns= 1.51. 

ellipse, is plotted versus the chirality parameter y for the first six 
elliptical modes. The top plot shows the modes that are RH 
elliptical for y > 0 (and LH elliptical for y < 0) evolving from TM 
modes at Y = 0, and the bottom plot shows the modes that are LH 
elliptical for y > 0 (and RH elliptical for y < 0) evolving from TE 
modes at y= 0. For convenience, the curves are labeled 
according to the handedness of the mode for positive y. These 
curves are solutions of Eqs.(29) and (30) for the case |g|<l, and 
Eqs.(32) and (33) for |g|>l . The horizontal dotted lines identify 
the values g = +1 and g = -1 corresponding to predominantly 
RHC and LHC polarization, respectively, of the transverse 
electric field. Note that for a given chirality, the higher the order 
the more elliptical (less circular) are the modes. The polarization 
eccentricity for a given elliptical mode also depends on the core 
thickness, as discussed in the next section. 

Thickness dependence and cutoff conditions 
Figures 3 and 4 show the mode effective index as a 

function of increasing film thickness for an achiral (y =0) and a 
chiral (y = 4.5xl05 urn) waveguide, respectively. In the well- 
known case of the achiral waveguide (Figure 3), note that the 
effective indices for TE and TM modes of a given order get 
closer together as the thickness increases and there are no 
crossover points. In the chiral waveguide (Figure 4), on the other 
hand, the right-handed elliptical (RHE) and left-handed elliptical 
(LHE) modes of a given order separate as the core gets thicker 
and the RHE modes cross over LHE modes at numerous 
thickness values, as shown more clearly in the inset in Figure 4. 
In addition to the usual cutoff at a minimum thickness, the LHE 
modes all experience a second cutoff with increasing thickness 
determined by the chirality and refractive indices. This mode 
separation and mode crossover with increasing thickness were 
also found in the derivations in Refs. 12 and 18, but neither of 
these previous works discussed the existence of the second cutoff 
for completely guided LHE modes. 

Just like the achiral case, the cutoff at minimum 
thickness for the LHE and RHE modes occurs when neff is at its 
minimum value, i.e., the larger of n0 and ns. Assuming no<ns, the 
cutoff thickness is found by simultaneously solving for the cutoff 



Figure 4. Effective index neS vs thickness d curves for RHE 
and LHE modes in a chiral (y = 45 pm) asymmetric planar 
waveguide with ng = 1.59, n0= 1.00, ns= 1.51. The inset is a 
blowup emphasizing the mode crossover points and second 
cutoff of the LHE modes. 
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Figure 5. A plot of the effective index (left axis) and 
eccentricity parameter g (right axis) for the RHEo mode versus 
thickness illustrating the variation in eccentricity in the vicinity 
of the intersections of the RHEQ mode effect index (left axis) 
with the LHE modes (faint lines) for the same waveguide 
parameters as in Figure 4. The icons included to help visualize 
the eccentricity are: vertical double arrow - TM, horizontal 
double arrow - TE, ellipses - elliptical polarization with x or y 
major axis. 

values gc and dc with n^ = ns substituted in the two equations 
(29). (Because arccot (°°) = 0, the equations do not contain hc.) 
These equations can be conveniently solved in two steps. First, 
gc is found as the root of 

Uc Wc + Mn) - u~(<t>c + Mn) = 0 (42) 

where 

«c =*ov("±)2-ni 

for = cot ' <\±8\ 
\i ±\2      2       . 
(M  )   ~ns  m±gc 

l±Sc 
(43) 

and M represents the mode number M* for RHE or M~ for LHE 
modes. Once gc is found, the cutoff thickness at a given 
wavelength can then be obtained from 

kQdc 
0c +M~7t 

(44) 

The cutoff value hc is given by 

RHE(A/=A^)=»0<gc<l, LHE(M=AO=> 
Y<0: 

RHE(Af=Ar)=»r0<«c<00. LHE(A/=AT) = 

' < gc <-ro 

-l<gc<0. 

(46) 

For those cases in Eqs.(46) where |gc|>l, it is advantageous 

numerically to solve instead for g~c using <pf in place of 0<r in 

Eqs.(42) and (44), where 0,r has the same definition as 0f in 

Eq.(43) but with ^c replaced by \lgc. 

The second cutoff at maximum thickness for LHE 
modes (RHE modes when y<0) arises because both of the 
equations (corresponding to the two signs) in Eq.(32) must be 
satisfied simultaneously for a given mode and the maximum real 
value of nrg for completely guided modes is ntS = n+ (when y > 
0).25 No matter how dominant one handedness of circularly 
polarized waves becomes over the other handedness, both types 
of waves must be present in order to satisfy the boundary 
conditions. [Recall that both LHE and RHE waveguide modes are 
comprised of the total field from two RHC-polarized waves and 
two LHC-polarized waves, as in Eqs.(14) and (15), and n* are the 
refractive indices associated with these waves.] Thus, even for 

LHE modes u+ must be real, which requires that nejj < n+ . 

1-2 
cos(ucdc)(r0+gc) | l 

cos(«prfc)(r0-gc) 
(45) 

In Eqs. (42)-(45), the ranges of solutions for gc are 

y>0: 
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Figure 6. Relationship of the substrate eccentricity parameter h 
(short-dashed line) to the upper cladding eccentricity 
parameter g (solid line) as a function of thickness for the RHEQ 

mode of Figures 4 and 5. The inset shows h ~ g when m - m+ 

is even and h = \lg when m'-m* is odd. Also shown for 
reference is the core amplitude ratio #7fT versus thickness. 

Noting that the cutoff here occurs also with nearly 
circular polarization, we put n^ = n* together with g =h = -1 in 
Eq.(32) to obtain 

dc2(M   ) = cot 

+ cot 

(1-5) 

a-s\ 

\(n-)2-(n + )2  ro+1 

(«+)2-«0
2      2 

Un   )2-(n+)2  rs+\ 

(n+)2-n2        2 
(47) 

+ M n )^~ <k0yl(n-)2-(n + )2 

Because 8 « 1, an approximate value for this cutoff thickness is 
given by 

dc2(M   )■■ 
1 

2k0n„ 
(M   +1) 

# 
-n - 1 + t) l + rs 

V1_,Ö     V1_/i j. 
• (48) 

From this expression it can be seen that in the achiral limit 
(whence 8 —> 0), this second cutoff thickness becomes infinite, 
consistent with the nonexistence of such a second cutoff in the 
achiral case. The maximum thickness cutoff of the LHEQ mode 
for the example in Figure 4, which has y=4.5xl0'5 (xm, occurs at 
slightly less than 3 um. This value of y corresponds to a bulk 
rotatory power of 642 deg/mm at a wavelength of 633nm. For 
reference, a bulk rotatory power of 30 deg/mm (y=2.1xl0"6 ^m) 
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Figure 7. Detail of the crossover of mode RHEQ (dotted line) 
with LHE! (solid line) in Figures 4-6. Top plot: effective indices 
versus thickness. Bottom plot: eccentricity parameter g for RH 
polarization (1/g for LH polarization) versus thickness. In the 
narrow transition region, indicated by vertical dotted lines, only 
LH polarization exists. 

results in a maximum thickness cutoff of 16.7 urn for the LHEQ 

mode. 
At this point, we note the connection between our 

solutions and the approximate solutions for the asymmetric planar 
waveguide given in Ref. 18. We can obtain the RHC mode 
equations of their work by putting g=l, h=l, rs =1, and solve 
Eq.(29) with the plus sign while ignoring the corresponding 
equation with a minus sign. Similarly, their LHC modes can be 
obtained by setting g= -1, h= -1, rs =1 and solve Eq.(29) with 
the minus sign while ignoring the companion equation with a plus 
sign. This gives reasonably good values for the effective indices 
of the RH-modes in general and for the LH modes between the 
low and high thickness cutoff values. However, the 
approximations used in Ref. 18 resulted in missing the second 
thickness cutoff for the LHE modes (y>0) and ignoring the fact 
that higher order modes have differing degrees of elliptical 
polarization (see Figure 2). 

Eccentricity and mode crossover points 
In this section we examine the behavior of mode 

eccentricity with increasing thickness, the relationship between 
the integers m* and the mode order numbers A/* , and the details 
of the mode crossover points. In Figure 5 is plotted the effective 
index (left axis) for the RHEQ mode along with the eccentricity 
parameter g (right axis) as a function of thickness. With 
increasing thickness d, the effective index neff for RHEo crosses 
over successively higher LHE modes, viz., LHEL LHE2, etc. To 
obtain this curve for mode A^=0, Eqs.(29) and (30) are solved, 
starting from cutoff, with m+ = 0 and, initially, rn = 0. The 
eccentricity parameter g for the upper cladding starts out small in 
this example (nearly TM, with the j-axis the major axis of the 
polarization ellipse) but increases to g = 1 (circular polarization) 
as d increases. There is then a n discontinuity in arccot and m~ 
increases by 1 to m - 1. With further increase in thickness, the 
jc-axis becomes the major polarization axis (because g >1) and 
eventually g —**> (TE)  as  RHEQ crosses over LHE,.  After 
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Figure 8. Effective index neff vs. thickness k$ mode curves for a 
2 \\m thick core with ng = 1.59, n0 = 1.00, and ns = 1.57. The 
LHE modes are cut off by the line neff = n+(ko), while the RHE 
modes are asymptotic to this line undergoing a high frequency 
cutoff when n+(&o) —* ns. 

crossing over LHEi, the sequence repeats, starting with g = 0 ( 
TM), then RH elliptical with major y-axis, increasing to g = 1 
(circular, where m is bumped up to m = 2), then RH elliptical 
with major ;c-axis, and finally g —>°° (TE) as the LHE2 crossover 
approaches. Polarization ellipse icons are included in Figure 5 to 
help visualize this sequence. In general, for an RHE mode AT, 
we fix m+ = Af in Eqs.(29) and (30) [or Eqs.(32) and (33)] and m 
varies according to m~= AT, At + l,At + 2,... with increasing d. 

The polarization parameter h, which is proportional to 
the eccentricity in the substrate, satisfies h = g when m - m+ is 
an even integer, and h~\lg when m~ - m+ is an odd integer. 
This is shown in Figure 6, where h, g, m~, and B+/B~, are plotted 
versus thickness for the RHEQ mode. The inset shows h plotted 
directly against g . 

A similar sequence of events occurs for the LHE modes 
with the differences that now g is negative and a given LHE 
mode only crosses over RHE modes of lower mode number as the 
thickness increases. In general, for LHE mode At, we fix m = M 

and m+ varies according to m+ = AT, M~ - 1, M~ - 2,..., -1 
with increasing thickness, with cutoff occurring while m+ = -1. 

It would seem that there is an abrupt polarization 
discontinuity at the cross-over points in Figure 5. However, on 
closer examination, it turns out that there is a transition region at 
the mode crossovers, as illustrated in Figure 7 with vertical dotted 
lines for the RHEo/LHE! crossover. Inside this small region, both 
modes are LH elliptical - one with an ;t-major axis and one with a 
y-major axis. The effective index curve for RHEQ merges 
continuously from the left into the LHE, curve, and the 
eccentricity for RHEQ varies continuously from RH elliptical, 
with jc-major axis, to TE (l/g=0), to LH elliptical with *-major 
axis. The effective index curve for LHE! merges continuously 
from the left into the RHEo curve, and the eccentricity for LHE! 
varies continuously from LH elliptical, with y-major axis, to TM 
(g=0), to RH elliptical with y-major axis. Although this behavior 

Figure 9. Eccentricity parameter g for the first three RHE modes 
(top plot) and 1/g for the first three LHE modes (bottom plot) 
versus thickness for chirality y=0.45 picometers (solid line) and 
Y=4.5 picometers (dotted line) in a symmetric waveguide with 
ng = 1.59 and n0 = ns= 1.57. The values at cutoff [see Eq.(52)] 
for all but the zeroth order modes are gc = ±rs, where, in this 
example, rs = 0.975 ; note the initial rapid falloff and subsequent 
rise for d>dc. 

contradicts, somewhat, the designation RHE inside this region, 
we maintain the RHE/LHE mode designations because the 
crossover transition regions are very small. 

In general, the thickness values for the transition region 
edges for the RHE^-H mode at the LHE^- crossover region can be 
obtained from Eqs.(29) using 

AT - Af1, = odd integer 
low-rf side: l/g = 0, h = 0 
high-rf side: g = 0, \lh = 0; 

M~ - At = even integer 
(49) 

low-rf side:  l/g = 0, 1/A = 0 
high-rfside: g = 0,7i = 0. 

These substitutions in Eq.(29), together with rn = M" and m+ = 
M+, yield two equations with unknowns neS and d. They can be 
straightforwardly solved by first eliminating d, solving the 
resulting equation numerically for neff, and then using either of the 
original equations to find d. 

Frequency dependence 
Ref. 18 predicted two frequency cutoff values for the 

right-handed modes.26 We will show that both RHE and LHE 
modes have a low-frequency and a high-frequency cutoff for 
completely guided modes, although for different reasons. The low 
frequency cutoff is the usual one that corresponds to the 
maximum wavelength Xc for which a waveguide of given 
thickness d can still support the mode A/* of interest. This can be 
found by simultaneously solving for the cutoff values 
kQc = 2njXc and gc in the two equations 



+ .    ,+       + (50) 

where u^ and 0<r are given by Eqs.(43), taking into account that 

8=kongy and n~ =ng /(l±5)are wavelength dependent. At this 

cutoff   we   put    m+=m~=M+    for   RHE   modes   and 

m+ =m~ =M~ forLHEmodes. 
Starting from these cutoff values, Figure 8 shows the 

effective index for the first two LHE and RHE modes plotted as a 
function of ICQ = 2^/A for a 2 \im thick core with ng = 1.59, n0 = 

1.00, and ns = 1.57. In the interest of simplicity, the frequency 
dependence of the chirality parameter y and of the average index 
ng is not taken into account in this plot. For reference, the 
frequency dependence of the effective index for the first two TE 
modes are plotted for the achiral guide with a core index of ng. 
(The TM modes are virtually indistinguishable from the TE 
modes on this scale.) Just as there is a maximum thickness 
cutoff for completely guided LHE modes, there is a high 
frequency cutoff that occurs as n^ —> n+(ko) for these modes. The 
numerical value can be obtained by finding the root fa that 
satisfies Eq.(48) [after replacing dc2 with the desired thickness d] 
together with (6). The corresponding left-handed polarized modes 
in Ref. 18 have no high frequency cutoff and continue 
indefinitely with increasing ko- 

A high frequency cutoff for the right-handed modes18 

seen in Figure 8 arises because in order for completely guided 

modes to exist the effective index is limited to ns < neff < n+ 

(hereassumingY>0and«s>no). As n+ =ng/(l + S) decreases 

with increasing 8 (decreasing A,), there will be some sufficiently 

short wavelength such that the limit n+ —> ns => S = (1 - rs)/2 

is reached, and no guided modes are allowed. 
The eccentricity parameter g also undergoes dramatic 

changes as a function of frequency at a fixed thickness, like those 
changes shown in Figs. (5) and (6) for the case of changing 
thickness and fixed frequency. 

The symmetric chiral-core planar waveguide 
As the refractive index n0 of the upper cladding 

approaches ns for the lower cladding, the ranges of thickness 
values where m~ - m+ is an odd integer (for example, the regions 
in Figure 6 where h ~ \lg) become narrower and narrower until, 
in the limit no = ns, only even integer differences exist and h = g 
everywhere.   In this limit, Eq.(29) reduces to 

u~d=2ip~ +m~n, (51) 

with (J)* given by Eq.(24). [Note that Eq.(25) is now equivalent to 
(51)]. When Eq.(51) is solved for tf and substituted in Eq.(l 1), 
the solutions to Eqs.(10) in the core take the forms 

Vcore(y) = B±cos^±(v + rf/2)+ m±n/2j, 0<y<-d, (52) 

which are easily seen to separate into even or odd functions (viz., 
pure cosines or sines) depending on whether m* are even or odd 

integers, respectively. As the waveguide thickness increases for 
RHE modes (m+ = M +), the integer nf progresses through the 
series m'= M*, M* + 2, h/t + 4, ..., with the change to the next 
higher value occurring as g passes through +1. For the LHE 
modes (tn = M ' ), m+ varies according to m+ = M~ - 2 (for 
M~*0), M~, M'-2, M'-4,... with the change to the next 
value occurring as g passes through -1; the second cutoff at 
maximum thickness occurs at m+ = 0 for even modes and m+ = -1 
for odd modes. 

The cutoff at minimum thickness for the symmetric 

waveguide, given by Eq.(44) with 0<r ->0 as n<>-» ns, is the 

same as found in Ref. 12. As in the achiral case, the zeroth order 
modes persist down to d=0. To obtain the values of g at cutoff, 
we use Eq.(51) with (43) in the limit n^-» ns = n0. For the cutoff 

of RHE modes (g>0, m+=M*) we have </>£ -> 0 and fa * 0, 

while 0c * 0 and 0^ -> 0 for the cutoff of LHE modes (g<0, 

m"=AT). For 8*0 we get 

+ 
8c 

-G±T]G2+rs,M
± =0 

±rs , M± *0 

where 

o.    4' 
Ä0-A,) 

(53) 

(54) 

It is notable that for A** * 0, the cutoff value of the eccentricity 
parameter g is independent of the chirality parameter y, so long as 
Y * 0. This is illustrated in Figure 9, which shows the behavior of 
g near cutoff for the first three RHE and LHE modes. In addition, 
as follows from Eq.(41), ß~=0 at an RHE cutoff and ß+=0 at an 
LHE cutoff. The second cutoff at maximum thickness for the 
LHE modes in the symmetric case is given by Eqs.(47) and (48) 
with r0 = rs. 

5. CONCLUSION 

In this paper we have presented the general solution in Eqs.(29) 
and (30) for modes in an asymmetric planar waveguide with an 
isotropic chiral core in terms of a pair of parameters g and h 
related to the eccentricity of the polarization ellipse for the 
transverse electric field [see Eqs.(38) and (40)]. The symmetric 
waveguide is discussed as a limiting case. This formulation 
provides insight into the transition, with increasing chirality of 
the core, from TE/TM modes in the achiral case to modes with 
nearly right-handed and left-handed circular polarization. The 
polarization of the transverse electric field for the modes is 
elliptical in general with RHE (right-handed elliptical) modes 
evolving from TM modes and LHE modes evolving from TE 
modes as the chirality parameter y increases from zero. The 
eccentricity of the polarization of the transverse electric field 
varies dramatically with thickness and with frequency. 
Expressions for the minimum thickness cutoff values are given in 
Eqs.(42)-(44) for the asymmetric waveguide and in Eqs.(44) and 
(53) for the symmetric waveguide. For materials with positive 
Y, completely guided LHE modes (RHE modes for negative y) 
experience a second thickness cutoff, given by Eq.(48), so that 
total internal reflection of both the RHC and LHC components of 



these left-handed modes occurs only between a minimum and 
maximum thickness. Correspondingly, there are also minimum 
and maximum frequency cutoffs. Although the existence of a 
maximum frequency cutoff for the RHE modes has been reported 
earlier18, the second cutoff conditions have heretofore not been 
reported for the LHE modes. The unique polarization properties 
of chiral waveguides discussed in this paper may lead to new and 
useful device designs. 

Appendix: Boundary Conditions 
The continuity of the tangential components of E and H, viz., 
Ex ,EZ,HX,and Hz at the two interfaces,y = 0 andy = -d, 

gives rise to a set of 8 equations - one less in number than the 
nine unknowns A1, ß*, C4, $*, and n^- leaving arbitrary the 
overall amplitude of the lightwave. From Eqs.(3) together with 
(8), (9), and (11), one gets 

E1atv=0: 

ß+cos0++ß   cos0   =A++A (Al) 

Hs at v=0: 

ß+cos0+-ß~cos0~ =Jrb\A+-A  ) (A2) 

featy=0: 

B+Jift<TQ sin0++B~y[i^aQsm<p~=A+-A~        (A3) 

Hz at v=0: 

ß+<TQSin0++ß aQ&in<j>   =A++A (A4) 

E^ at v=-d: 

B+cos(u+d-<l>+) + B~cos(u~d-(l>~) = C+ +C~     (A5) 

//jatv=-rf: 

B+ COS(u + d -<p+)-B~ COS(U~d -<t>~) = JrJ(C+ ~C~) 

(A6) 

Eiai.y=-d: 

B+JrJo+!>m(u+d-<!>+)-B~Jr^aJf>\T\(u~d-(l>~) = C+-C~ 

(A7) 

H, at v=-d: 

B+a+ sin(u+d -<p+)+B~oJ sin(u~d -0~) = C+ +C~, 

(A8) 

where (TQ ,crj, ^, andr^ are defined in Eq.(18). 

Eliminating /I* in the first four equations gives 

B
+
(CTQ sin0+ -cos0+) + B~((TQ sm<l>~ -cos<p~)=0   (A9) 

and 

B+ (rQ0Q sm<j>+ -cos0+)-ß~(/r/rrJsin0~ -cos0~) = O , 

(A 10) 

while elimination of C4 in the last four equations gives 

ß+^T+sin(u+rf-0+)-cos(w+rf-0+)j 

+ ß [T; sin(« d - <j>  ) - cos(« d - <p  ) u (All) 

and 

ß+|rs<T+sin(M
+d-0+)-cos(tt+d-0+)j 

'[/JCTJ sin(«* d - <j>  ) - cos(« d - 0   ) ]-o 
.    (A12) 

As discussed in the body of this paper, these last four equations 
determine the effective indices neff, the phases ((»*, and the ratio 

B+/B~ . 
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